

A statistical study of EMIC waves observed by Cluster

<u>R. C. Allen^{1,*,†} (Robert.Allen@SwRI.edu)</u>, J.-C. Zhang¹, L. M. Kistler¹, H. E. Spence¹, R.–L. Lin², B. Klecker³, M. W. Dunlop⁴, M. André⁵, and V. K. Jordanova⁶

¹Space Science Center, University of New Hampshire, Durham, NH 03824, USA, ²National Space Science Center, Chinese Academy of Sciences, Beijing 100190, P.R. China, ³ Max-Planck-Intitut für Extraterrestrische Physik, Garching, Germany, ⁴ Space Sciences Division, SSTD, Rutherford Appleton Laboratory, Chilton, DIDCOT, Oxfordshire, OX11 0QX, United Kingdom

⁵ Swedish Institute of Space Physics (IRF), Box 537, SE-751 21 Uppsala, Sweden, ⁶ Los Alamos National Laboratory, Los Alamos, NM 87545, USA

*Now at University of Texas at San Antonio, San Antonio, TX 78249, USA

[†]Now at Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX 78238-5166, USA

2014 GEM Workshop, Portsmouth, VA, 15-20 June, 2014

Left-handed wave occurrence rate:

Abstract:

New Hampshire

Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the ellipticity, normal angle, energy propagation angle distributions, local plasma parameters, and wave generation proxies are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the MLT-L frame within a limited MLAT range. This poster will present selected results from a pair of recently submitted papers [Allen et al., 2014a; 2014b], which performed a statistical analysis of EMIC wave properties using ten years (2001-2010) of data from Cluster, totaling 17,987 minutes of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves almost at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. From this analysis, three source regions of EMIC waves appear to exist: 1) The well studied overlap between cold plasmaspheric plume populations with hot anisotropic ring current populations in the post-noon to dusk MLT region; 2) Regions all along the dayside magnetosphere at high L-shells related to the dayside magnetospheric compressions; 3) Off-equator regions associated with the Shabansky orbits in the dayside magnetosphere.

Dawn Sector 300 < MLT ≤ 0900 Noon Sector $0900 < MLT \le 1500$ Dusk Sector $1500 < MLT \le 2100$

Number of left-handed wave (e<-0.1) bins over the total number of wave bins. Peaks are observed primarily at lower MLATs and correspond to regions of higher wave occurrence. Slight increase at off-

Intro to Linear Theory:

Linear Theory states that for an EMIC wave to occur, the wave growth parameter, Σ_h , must be larger than the instability threshold, S_h [Gary et al., 1994]. Where,

 $\Sigma_{h} = \left(\frac{T_{\perp}}{T_{\parallel}} - 1\right) \beta_{\parallel h}^{\alpha_{h}} \qquad \qquad S_{h} = \sigma_{0} + \sigma_{1} \ln\left(\frac{n_{hp}}{n_{a}}\right) + \sigma_{2} \left[\ln\left(\frac{n_{hp}}{n_{a}}\right)\right]^{2}$

 $\alpha_h = a_0 - a_1 \ln\left(\frac{n_{hp}}{n_e}\right) - a_2 \left[\ln\left(\frac{n_{hp}}{n_e}\right)\right]^2$

with $\sigma_0 = 0.429$, $\sigma_1 = 0.124$, $\sigma_2 = 0.0118$ and $\alpha_0 = 0.409$, $\alpha_1 =$

Motivation:

occurrence. Slightly lower occurrence

rate in dawn sector.

Linear wave occurrence rate:

Dawn Sector $0300 < MLT \le 0900$

Dusk Sector $1500 < MLT \le 2100$

Number of linear wave bins (|e|<0.1) over the total number of wave bins.

Higher occurrence rates are observed at higher MLATs.

This enhancement could be an effect of EMIC waves that have passed through the cross-over frequency.

0.0145, and $\alpha_2 = 0.00028$ [*Blum et al.*, 2009]. Thus, by looking at $\Sigma_h - S_h$ during the events, we are able to see whether the observed waves are in a predicted source region.

The linear wave growth parameter exceeds the instability threshold in regions of peak wave occurrence.

This would imply that the regions of peak wave occurrence are also regions of wave generation.

- 1. Investigate the distribution of various wave parameters in the magnetic latitude.
- 2. Explore the effects of Shabansky orbits [Shabansky, 1971; *McCollough et al.*, 2012] on off-equator EMIC wave generation. 3. Expand on previous statistical studies that had limited MLAT coverage [e.g. Loto'aniu et al., 2005; Min et al., 2012; Keika et *al.,* 2013].

EMIC wave occurrence rate:

Number of minutes of wave activity over s/c dwell time in log scale.

Peaks are seen in three regions: 1) in the dusk sector at low MLAT and mid-L-shell; 2) all along the dayside magnetosphere at high L-shells near the

Right-handed wave occurrence rate: Noon Sector 0900 < MLT ≤ 1500 Number of right-handed wave (e>0.1) bins over the

total number of wave bins. Higher occurrence rates of right-handed waves are observed in the dawn sector.

This could be due to a low He⁺ abundance causing waves to be generated with high normal angle and linear to right hand ellipticity.

liccucci	ionc	8.Con	clucione
<u>13CU33</u>		acom	

Occurrence rate	 Peaks are seen in three regions: 1) in the dusk sector at low MLAT and mid-L-shell 2) all along the dayside magnetosphere at high L-shells near the magnetopause 3) off-equator at mid L-shells and mid to high MLATs 		
Ellipticity occurrences	Left-handed: High occurrence in all dayside sectors for low to mid MLATs. Linear: Enhanced occurrence in high MLATs.		
	Right-handed: Occurrence peaks in the dawn sector.		
Hot proton Anisotropy	For L-shells < 10: Increasing anisotropy moving from dusk to dawn. For L-shells > 10: Steady levels of high anisotropy		
	Satisfied in the regions of peak wave		

magnetopause; and 3) offequator at mid L-shells and mid to high MLATs

The Tsyganenko T01s magnetic model is used for both the Lshell calculations in the MLT panel, as well as the reference field lines (from nominal solar wind conditions) in the MLAT panels.

Acknowledgements:

Work at UNH was supported by NASA under grant numbers NNX11AO82G and NNX11AB65G. This work was also supported by RBSP-ECT funding provided by JHU/APL Contract No. 967399 under NASA's Prime Contract No. NAS5-01072.

Hot proton (10-40 keV) anisotropy: Hot proton (10-40 keV) anisotropy $(T_{\perp}/T_{\parallel}-1)$ observed during wave events. For L < 10, all observations are consistent with anisotropy increasing from dusk to dawn, as reported by Min et al. [2012] and Denton *et al.* [2005]. For L > 10, the anisotropy is roughly steady and enhanced, all along the dayside magnetosphere.

Linear theory occurrence. This indicates those regions are likely wave generation regions.

Satisfied in the regions of peak wave

For more analysis of these parameters, as well as others, see the two upcoming JGR publications by Allen et al. [2014a; 2014b]

References:

Allen et al. (2014a), JGR, [submitted] Allen et al. (2014b), JGR, [submitted] *Blum et al.* (2009), JGR, doi: 10.1029/2009JA014396. *Denton et al.* (2005), JGR, doi: 10.1029/2004JA010861 *Gary et al.* (1994), JGR, doi: 10.1029/94JA00253. *Keika et al.* (2013), JGR, doi: 10.1002/jgra.50385. *Loto'aniu et al.* (2005), JGR, doi: 10.1029/2004JA010816. *McCollough et al.* (2012), JGR, doi:10.1029/2011JA016948. *Min et al.* (2012), JGR, doi: 10.1029/2012JA017515. *Shabansky* (1971), SSR, doi: 10.1007/BF00165511.