Multi-epoch analysis of solar wind-originating oxygen inside the magnetosphere of Earth
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Distributions of O°* show only slight storm phase dependence

- Quiet time shows an dawn-dusk asymmetry in O°* favoring dawn

- Main phase shows a flux enhancement along the dayside magnetosphere, likely related to
compression

- Recovery shows the relaxing of the magnetospheric compression and return to the dawn-
dusk asymmetry

- Indicates that increased convection is not bringing in significant O°* from the magnetotail

Distributions of Ot show the build up of the ring current

- Quiet time shows little signature of the ring current near L ~ 5

- Main phase shows an asymmetric ring current build up with broad
ore-midnight peak

- Recovery shows the development of a symmetric ring current

- Late recovery (not shown) shows the deterioration of the ring current
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noon
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